Laying out Diagrams Using Graph Analysis and Drawing

Library -

GRAD

Renata Vaderna, Gordana Milosavljevi¢, Igor Dejanovic¢

Faculty of Technical Sciences, University of Novi Sad
vrenata, grist, igord@uns.ac.rs

Abstract

Graph drawing is an area of computer science motivated
by the relatively frequent need to visualize information
as graphs. The importance of this field is evidenced by
the fact that there is a large number of graph drawing
algorithms in existence, with new ones still being devel-
oped. This paper gives an overview of the most important
classes of these algorithms and showcases the most popu-
lar open-source Java libraries that offer a decent number
of their implementations. All of these libraries strongly
focus on visualization, making their integration with sep-
arately developed graphical editors overly complex. Fur-
thermore, none of them provide a way of helping a user
with little knowledge of graph drawing theory pick the
right algorithm. In order to address the mentioned issues
and provide additional graph analysis and drawing algo-
rithms, we are developing another library called GRAD.

1 Introduction

Graph drawing is an area of mathematics and computer
science concerned with the geometric representation of
graphs and networks. It is motivated by those applica-
tions where it is crucial to visualize structural information
as graphs [1]. Formally, a drawing of a graph maps each
of its vertices to a distinct point of the plane and each of
its edges to a simple Jordan curve connecting two ver-
tices. The process of creating a drawing of a graph from
the underlying structure is known as automatic graph lay-
out. Every graph can be graph in a very large number
of ways, but the resulting drawings are not always un-
derstandable and nice to look at. That is why there is
a great number of graph layout algorithms which pro-
vide ways of creating aesthetically pleasing drawings of
graphs. However, implementing even the simplest algo-
rithms whose results are of satisfying quality is not an
easy task and many developers in need for such features
have to rely on existing solutions.

There are many libraries offering these features for
various programming languages, including C/C++, Python
and JavaScript, but this paper will focus the Java pro-
gramming language. The most popular open-source Java
graph drawing libraries include JGraphX [2], JUNG frame-
work [3], and Prefuse [4].

In addition to implementing a number of layout algo-
rithms, all of these libraries heavily focus on providing

visualization components which enable interaction with
edge-node graphs. Those looking to quickly visualize
certain information would undoubtedly find these compo-
nents very useful. On the other hand, using an algorithm
to lay out diagrams of separately developed graphical edi-
tors is also a relatively common need. However, the men-
tioned libraries strongly couple layout algorithms with vi-
sualization components and simply calling a layout algo-
rithm and retrieving its results is often overly complex.

Furthermore, the libraries provide a decent number
of graph drawing algorithms of varying complexity, but
certain classes of these algorithms are not present at all.
These include planar straight-line, symmetric and more
advance circular to name a few. In order to address the
firstly mentioned issue of the complexity of separating an
algorithm from the visualization and to provide a greater
number of layout algorithms, we are developing a new
graph drawing and analysis library called GRAD [5]. It
offers implementations of certain algorithms belonging to
the mentioned classes, not supported by other libraries, as
well as a large number of graph analysis algorithms and
a way of automatically selecting the best algorithm based
on the graph’s properties. Moreover, it also includes a
way of letting the users descriptively specify how a draw-
ing should look and automatically choosing the best algo-
rithm or their combination.

The rest of the paper is structured as follows. Section
2 gives a short overview of different classes of layout al-
gorithms. Section 3 describes the popular Java libraries in
more detail. Section 4 presents GRAD, with the emphasis
being put on its layout capabilities. Section 5 concludes
the paper and outlines future work.

2 Overview of Graph Drawing Algorithms

There is a great number of graph layout algorithms, with
plenty of researchers working on discovering new and
enhancing existing ones. The quality of an algorithm
is determined based on its computational efficiency as
well as various aesthetic criteria. These algorithms can
be grouped into several classes, which will be briefly de-
scribed in the following paragraphs.

Tree drawing is one of the best studied areas of graph
drawing with a great number of practical applications.
There are various approaches to drawing trees, with the
most frequently used ones being level-based, horizontal-

vertical (H-V) and ringed-circular approaches. A detailed
overview and comparison of different tree drawing al-
gorithms can be found in [6]. Hierarchical drawing al-
gorithms are often used to draw directed graphs (or di-
graphs) which present hierarchies and are to complex to
be drawn using the tree algorithms.

A circular drawing of a graph is its visualization which
partitions it into clusters whose nodes are placed onto the
circumference of an embedding circle. Also, each edge is
drawn as a straight line. Circular drawings can be com-
bined with techniques which set the order of nodes in or-
der to minimize the number of edge crossings.

Symmetric graph drawing algorithms aim to draw a
graph with a nontrivial symmetry, or, more ambitiously,
with as much symmetry as possible.

Planar straight-line drawing algorithms focus on cre-
ating drawing of graphs without any edge crossings (pla-
nar) where all edges are drawn using only straight-line
segments. Not all graph have a planar drawing however.

Force-directed algorithms are among the most impor-
tant and flexible graph drawing algorithms. They can be
used to calculate layouts of all simple undirected graphs
and only need the information contained within the struc-
ture of the graph itself. There are many force-driven al-
gorithms, with Tutte’s 1963 barycentric method [7] being
considered to be the first one. The most popular ones in-
clude the spring layout method of Eades [8], Kamada -
Kawai [9] and Fruchterman - Reingold [10] methods.

3 Related Work

There are quite a few libraries for graph analysis and vi-
sualization for Java, the most popular of which will be
presented in this section. The focus will be put on the
layout algorithms they provide and the complexity of us-
ing them within separately developed graphical editors.
Generally, the libraries that will be mentioned put empha-
sis on visualization and strongly couple layout algorithms
with it, thus making the secondly mentioned task overly
complex. It should be noted that tools which generate
static drawings of graphs in a variety of output formats
will not be taken into consideration since they are not
suitable for this particular purpose. Furthermore, com-
mercial solutions will not be discussed since our focus is
on open-source ones.

JUNG — the Java Universal Network/Graph Frame-
work is an open-source software library that provides a
common and extendable language for modeling, analy-
sis, and visualization of data that can be represented as a
graph or network.

Among others, JUNG framework offers several graph
layout algorithms, with some of them being quite com-
plex. Summarily, there are three tree drawing algorithms,
a number of force-directed, and a simple implementa-
tion of a circular layout algorithm. The tree layout al-
gorithms include the following: an implementation of a
level-based approach, radial tree method, and the balloon
method. The balloon method positions vertices using as-
sociations with nested circles or “balloons”. The force-
directed algorithms are the popular and flexible spring

method, Kamada-Kawai and Fruchterman-Reingold, as
well as an algorithm based on Bernd Meyer’s self - orga-
nizing graph methods [11], referred to as ISOM layout.

However, JUNG framework’s layout algorithms are
mainly meant to be used with its visualization tools. For
example, in order to trigger the execution of any of these
algorithms, it is necessary to instantiate the visualization
model. Furthermore, setting the sizes of the vertices be-
fore calling a layout algorithm requires extensive knowl-
edge of the framework.

JGraphX is a Java Swing library which provides visu-
alization and interaction with node-edge graphs, as well

as a decent number of algorithms for graph analysis. JGraphX

offers various usable implementations of graph drawing
algorithms: a tree, hierarchical, and two algorithms based
on the force-directed layout paradigm. The tree layout in
question is compact tree layout, which improves the stan-
dard level-based approaches by trying to make the result-
ing drawing as compact as possible.

In order to use one of JGraphX’s algorithms it is nec-
essary to create an instance of its graph class. Same can
be said about JUNG framework, however, unlike the pre-
viously described library, JGraphX graphs are not param-
eterized. This means that that existing sets of objects
representing vertices and edges of a diagram need to be
transformed into JGraphX’s. More importantly, one must
be quite familiar with how JGraphX works in order to get
positions of the vertices once layout algorithms have fin-
ished calculating them. More detailed description of the
difficulties of using JUNG framework’s and JGraphX’s
algorithms can be found in [12].

Prefuse is a software framework for creating dynamic
visualization of both structured and unstructured data, that
provides theoretically-motivated abstractions for the de-
sign of a wide range of visualization application. Prefuse
is bundled with a library which, among other actions, pro-
vides a host of layout and distortion techniques. Avail-
able layout algorithms include random, grid-based, cir-
cular, a highly configurable forced-directed, and several
tree ones.

Although Prefuse is an excellent visualization tool,
integrating its layout algorithms into already existing ed-
itors is quite challenging. The difficulty lays in the fact
that Prefuse uses schedulers, precisely defining when cer-
tain actions should be performed. So, determining the
point in time when it is possible to retrieve the calculated
positions of graph elements can be problematic.

4 Graph Analysis and Drawing Library -
GRAD

The following section will present GRAD, our graph anal-
ysis and drawing library for the Java programming lan-
guage. GRAD is currently being used in our open-source
Kroki mockup tool [13] for laying out imported class di-
agrams created by other modeling tools. These diagrams
can contain over 600 classes. More details can be found
in [12], where the emphasis is put on this integration.
The main motivation for GRAD’s development is to
make the process of laying out diagrams of any graph-

ical editor as simple as possible, find and port the best
layout algorithms offered by other open-source libraries
and provide drawing and analysis algorithms that none
of them implement. So, GRAD strives to make calling
any available layout algorithm and retrieving its results
a very easy task. Furthermore, it offers a way of auto-
matically selecting the most suitable layout algorithm or
algorithms based on the properties of a graph. For ex-
ample, if the graph in question is a tree, one of the tree
drawing algorithm is selected; if it is a ring, a circular lay-
out is used etc. This can be of help to the users with little
or no knowledge of graph drawing theory and algorithms.
On top of that, GRAD offers the users the possibility of
descriptively specifying how the drawing of their graph
should look. Based on that description, the algorithms
whose results are closest to the user’s wishes is picked.
GRAD is not intended to be used as a visualization tool,
but it also provides a simple graphical editor which can
be used for familiarization with different algorithms.

4.1 Implementation of GRAD’s Layout Features

The following paragraphs will present the core concepts
of GRAD’s implementation of layout functionalities. The
focus will not be on how certain algorithms were imple-
mented, but on what is involved in the process of calling
them and retrieving the results. A class diagram contain-
ing the key elements of this feature is shown in fig. 1.

Firstly, it can be noticed that the class representing
a graph is parameterized. So, it is safe to use any two
classes as types of vertices and edges, as long as they
implement GRAD’s Vertex and Edge interfaces. This
makes it possible to easily specify properties of the ver-
tices and edges (e.g. sizes of the vertices). The cen-
tral class that handles a layout request is Layouter. It
accepts lists of vertices and edges, an enumerated value
corresponding to the algorithm of choice and, optionally,
values of configurable parameters of the algorithm. An
instance of GRAD’s Graph class will be automatically
created later using the two provided lists. Similarly, the
appropriated layout algorithm will be instantiated based
on the secondly mentioned parameter. If the value ”AU-
TOMATIC” is chosen, GRAD picks the best algorithm
by analyzing the graph’s properties. With the help of
the class GraphLayoutPropeties, certain parameters of
the chosen algorithm can be specified. This class maps
enumerated values naming properties of the algorithms
to their desired values. In order to avoid the escalation
of the diagram’s size, only a few of the properties enu-
merations were shown. This method of implementing the
specification of properties was chosen in order to achieve
as much genericness as possible. Finally, an object con-
taining mappings of vertices and edges to their positions,
Drawing, is returned. Therefore, all information needed
to position the diagram’s elements is obtained with no ad-
ditional effort. It should also be mentioned that once the
algorithm of choice has finished executing, parallel and
multiple edges are detected and positioned before the re-
sult is returned.

In addition to either directly selecting an algorithm
or stating that the graph should be laid out automatically,

the users can also provide a description of how the graph
should look and GRAD selects the layout algorithm based
on it. This feature was implemented by developing an
external domain-specific language (DSL) [14] and its in-
terpreter. In order to use it, a string conforming to the
DSL, as well as the lists of vertices and edges of the graph
should be passed to an instance of the DSLLayouter class.

o Vertex o Edge

+ getSize) :int
+ getContent () : Object

+ getSource () v
tDestination ()

DSLLayouter + isTree 0 boolean

1.1 |+ ising < boolean

- useresptiongisHg 0.1 1.1 + isConnected () : boolean
+ layout) : Drawing<V,E> graph — | + isBiconnected () : boolean

1.1
01 graph

o Layouter 1 - B
Drawing

- vertexMappings : Map<V,Point2D>

- Map<E,Point2D>

1.1

+ layout () : Drawing<V,E|
algorithm)

<<Enum>> 1
LayoutAlgorithms

- AUTOMATIC EnumConstant

- CIRCLE EnumConstant

- BOX : EnumConstant
- CONCENTRIC EnumConstant | properties;/
- TUTTE EnumConstant

- KAMADA_KAWAI : EnumConstant [
- FRUCHTERMAN_REINGOLD : EnumConstant

GraphLayoutProperties

| - properties : Map<PropertyEnum, Object> |
- SPRING EnumConstant [
- ORGANIC : EnumConstant

- FAST_ORGANIC EnumConstant
- RADIAL_TREE EnumConstant
- COMPACT_TREE : EnumConstant
- HIERARCHICAL EnumConstant

o PropertyEnums|

<<Enum>> <<Enum>>

CircleProperties BoxProperties
- DISTANCE EnumConstant - COLUMNS : EnumConstant
- OPTIMIZE_CROSSINGS : EnumConstant

KamadaKawaiProperties
- LENGTH_FACTOR EnumConstant
- MAXIMUM_ITERATIONS : EnumConstant

Figure 1: The core of GRAD’s layout model

4.2 GRAD’s Layout Algorithms and Their Compu-
tational Efficiency

GRAD ports the best algorithms from the JUNG frame-
work, JGraphX and Prefuse, and adds a number of new
implementations. The current version of GRAD includes
several tree and force-directed drawing algorithms, a hi-
erarchical, Tutte’s straight-line, a circular which mini-
mizes the number of edge crossings, a symmetric based
on the work of Carr and Kocay [15], and a so-called box
layout, which places elements in a table-like structure.
Apart from the algorithms belonging to the first three
classes (tree, force-directed and hierarchical), the other
ones are GRAD’s original implementations. A more de-
tailed description of the algorithms and aesthetic crite-
ria they focus on, as well as several examples of laid out
graphs can be found in [16]. Graph layout algorithm are
rated based on their computational efficiency (amount of
computational resources used by the algorithm) and the
aesthetics of the resulting drawing. In this section, the
emphasis will be put on the first criterion.

Table 1 shows how well the supported algorithms per-
form when laying out bigger graphs. The first test was
performed on a randomly generated graph with 1000 ver-
tices and twice as many edges, and the second one on a
tree with 1000 vertices. Naturally, the tree drawing al-
gorithms can only be performed on trees. If there is a
large number of algorithms from the same class (tree and
force-directed), a few were chosen as representatives. Al-

gorithms only meant to be performed on smaller graphs,
like Tutte embedding, were omitted from the tests. Tests
were performed on a computer with 8§GB RAM and Intel
i5 2.50 GHz processor.

Table 1: Time in milliseconds needed to lay out graphs

Algorithm Graph1 | Tree
Spring 1026 703
Fruchterman-Reingold 878 614
Kamada-Kawai 5283 4139
ISOM 479 403
Circular optimizing crossings 73099 | 71943
Circular not optimizing crossings 419 321
Symmetric 523 467
Hierarchical 52505 1059
Box 114 81
Compact tree X 643
Radial tree X 115
Balloon tree X 1652

In [17] some highly effective force-directed algorithms
are presented and their performance is measured. It is
stated that a graph of the similar size to the one used here
can be laid out in under 1 second. Some of the algorithms
offered by GRAD live up to that standard, while also pro-
ducing understandable drawings. The ISOM algorithms
is the best example. However, it should be noted that the
slower algorithms put more emphasis on aesthetics. That
is why GRAD offers a variety of different algorithms to
choose from.

5 Conclusion

This paper gave an overview of different classes of graph
layout algorithms and presented some of the most popu-
lar Java libraries focusing on graph drawing and visual-
ization. Due to the libraries strongly coupling their lay-
out algorithms with visualization, using the provided al-
gorithms within a separately developed graphical editor
is often too complex. Furthermore, none of them have
any features that would make the process of selecting a
layout algorithm an easy task even for those with little
or no knowledge of graph drawing theory. To address
the mentioned issues and provide additional graph layout
and analysis algorithms, we are developing a new graph
drawing and analysis library called GRAD.

GRAD ports the best algorithm provided by other Java
open-source libraries and adds its own set of layout al-
gorithms. These include a symmetric and a straight-line
algorithm, as well as an enhanced version of a circular
one. Additionally, GRAD offers a way of automatically
choosing the best algorithm based on the properties of the
graph and of selecting the algorithm based on the user’s
description of the desired characteristics of the drawing.
Plans for future improvements of GRAD include the im-
plementation of additional drawing algorithms, including
a better symmetric and one or more orthogonal ones as

well as the enhancement of the current ones to make them
more efficient.

References
[1] “International symposium on graph
drawing and network visualization,”

(2]
(3]
(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]
(14]

[15]

[16]

(17]

http://graphdrawing.org/index.html.
“Jgraphx,” https://github.com/jgraph/jgraphx.
“Jung framework,” http://jung.sourceforge.net.
“Prefuse,” http://prefuse.org.

“Graph analysis and drawing
https://github.com/renatav/GraphDrawing.

library,”

A. Rusu, Handbook of Graph Drawing and Visual-
ization. Chapman and Hall/CRC, 2007, ch. 5, pp.
155-192.

W. Tutte, “How to draw a graph,” in Proceedings
of the London Mathematical Society 13, 1963, p.
743-767.

P. Eades, “A heuristic for graph drawing,” Congres-
sus Numerantium, vol. 42, p. 149—-160, 1984.

T. Kamada and S. Kawai, “An algorithm for draw-
ing general undirected graphs,” Information Pro-
cessing Letters, vol. 31, pp. 7-15, April 1989.

T. Fruchterman and E. Reingold, “Graph draw-
ing by force-directed placement,” Software Practice
and Experience, vol. 21, p. 1129 — 1164, November
1991.

B. Meyer, “Self-organizing graphs - a neural net-
work perspective of graph layout,” in In Neural
Computers, 393—406, ECKMILLER. Springer,
1998, pp. 246-262.

R. Vaderna, G. Milosavljvi¢, and 1. Dejanovi¢,
“Graph layout algorithms and libraries: Overview
and improvement,” in ICIST 2015 Proceedings, 8-
11 March 2015.

“Kroki mockup tool,” http://www.kroki-mde.net.

T. Kosar, S. Bohra, and M. Mernik, “Domain-
specific languages: A systematic mapping study,”’
Information and Software Technology, vol. 71, pp.
77-91, March 2016.

H. Carr and W. Kocay, “An algorithm for drawing
a graph symmetrically,” Bulleting of the Institute of
Combinatorics and its Applications, vol. 27, pp. 19—
25, 1997.

R. Vaderna, 1. Dejanovié¢, and G. Milosavljevi¢,
“Grad: A new graph drawing and analysis library,”
in MDASD 2016 Proceedings, in press.

Y. Hu, “Efficient and high quality force-directed
graph drawing,” The Mathematica Journa, vol. 10,
pp- 37-71, 2005.

