
Graph Layout Algorithms and Libraries:
Overview and Improvements

 Renata Vaderna, Gordana Milosavljević, Igor Dejanović

Faulty of Technical Sciences, University of Novi Sad, Serbia
{vrenata, grist, igord}@uns.ac.rs

Abstract—This paper focuses on exploring the
possibilities of applying graph drawing algorithms to
lay out custom diagrams, with emphasis put on UML
class diagrams. Implementing even the simplest of
layout algorithms that would lead to acceptable
results requires excessive knowledge of graph theory.
For this reason, many developers have to rely on
existing solutions. There are several open source Java
libraries for graph drawing and analysis, but most of
them come with certain problems and limitations
making their integration with a separately developed
graphical editor overly complex. To deal with those
issues, we are developing another graph drawing and
analysis library, called Grad.

I. INTRODUCTION AND MOTIVATION

When developing modeling tools or expanding existing
ones, a need to automatically lay out diagram elements in
an aesthetically pleasing way might arise.

One such example is a lightweight UML class diagram
editor implemented as a part of a larger tool called Kroki
[1, 14]. Kroki enables users to create sketches of business
applications using several embedded tools, thus enabling
each participant to use their preferred way of
development: mockup editor, command console, or the
mentioned lightweight UML class diagram editor. On top
of that, sketches can be imported from general purpose
modeling tools. Furthermore, the class diagram editor
should be capable of opening imported sketches and
sketches created using other Kroki tools i.e. showing
class diagrams which represent them. Changes made in
Kroki’s class diagram editor are immediately visible in
the mockup editor and vice versa, which explains the
need for automatically arranging newly created elements
(packages, classes and links between them).

Implementing even the simplest of layout algorithms
that would lead to acceptable results requires excessive
knowledge of graph theory. Furthermore, simply deciding
which class of graph drawing algorithms would be best
suited for the given application can be challenging for
those new to this area of mathematics. For these reasons,
many developers would have to rely on existing solutions.
There are many open source libraries which focus on
graph drawing and provide implementation of certain
layout algorithms. With a large number of excellent graph
libraries for C/C++ and Python, it should be emphasized
that only Java libraries will be considered in this paper,
such as the popular JGraphX, JGraphT, JUNG and
Prefuse.

Although providing a decent number of layout
algorithms, all of these libraries primarily focus on graph

visualization, thus making simply calling the desired
algorithm and retrieving the results overly complex. In
addition to this, it is very unlikely that all elements of a
certain diagram would be of the same size, which would
require usage of a layout algorithm which takes this into
consideration. Some of the available solutions, however,
do not. On top of that, many algorithms handle recursive
links and multiple links between the same two elements
quite poorly. However, such links frequently appear in
class diagrams, so these problems cannot be ignored.

Having the mentioned limitations in mind, we are
developing another open source graph drawing and
analysis library, called Grad (GRaph Analysis and
Drawing) [2]. Unlike the other ones, it puts a lot of
emphasis on the ease of integration with other graphical
editors and deals with the previously mentioned problems.

The rest of the paper is structured as follows. Section 2
explains the need for automatically applying layout
algorithms within an existing graphical editor by shortly
describing Kroki's lightweight UML editor and the
requirements it had to fulfill. Section 3 gives a brief
introduction to graph theory and graph drawing
algorithms. Section 4 showcases some popular Java graph
drawing and analysis libraries and points out some of the
problems encountered when integrating them with
separately developed editors. Section 5 presents Grad, a
library being developed in order to address the most
common integration issues. Finally, section 6 concludes
the paper and outlines future work.

II. KROKI'S LIGHTWEIGHT UML EDITOR

A lightweight UML class diagram editor was
developed as a part of a tool named Kroki. Kroki is used
for rapid prototyping and participatory development of
enterprise applications based on mockups. It enables
users to create sketches of applications using a mockup
editor, command console, by importing models from
general purpose modeling tools and by using the
mentioned UML class diagram editor. Changes made in
Kroki’s class diagram editor should immediately be
visible in the mockup editor and vice versa. Therefore,
Kroki's UML class diagram editor had to fulfill some
additional requirements.

Firstly, packages, classes and their attributes and
methods and links established between them should have
additional semantics as they need to represent certain
elements of the sketches. This leads to the conclusion that
simply being able to visualize the sketches as class
diagrams isn't enough.

Secondly, it should be possible to open diagrams
corresponding to sketches created using other Kroki tools
than the UML editor with it. When doing so, there is no

data available regarding positions of the UML classes
formed from certain elements of the sketch. Therefore, a
layout algorithm must be automatically performed.
Without that, users would have to lay out the diagrams
manually. Since these diagrams can be quite large,
placing all of the elements in the desired positions would
drastically slow down the use of the Kroki tool.

III. BASIC GRAPH THEORY CONCEPTS AND GRAPH

DRAWING ALGORITHMS

In the following section, a short introduction to graph
drawing theory, as well as an overview of the most
commonly used algorithms will be given.

A. Basic definitions
A graph (V, E) is an ordered pair consisting of a finite

set V of vertices and a finite set E of edges, that is, pairs
(u,v) of vertices. A path is a sequence of distinct vertices,
v1, v2,..., vk, with k ≥ 2, together with the edges (v1,
v2),..., (vk-1, vk). A cycle is a sequence of distinct vertices
v1, v2,..., vk, with k ≥ 2, together with the edges (v1,
v2),..., (vk-1, vk), (vk, v1) [3] .

If edges are unordered pairs of vertices, then the graph
is undirected. On the other hand, if edges are ordered pairs
of vertices, the graph is directed. A graph is said to be
connected if there is a path from any vertex to any other
vertex in the graph. Graphs which are not connected are
referred to as disconnected. Graphs which contain at least
one cycle are called cyclic graphs, while the ones that do
not are known as acyclic. A graph is simple if it doesn't
contain any edges that join a vertex to itself (loops) or
more than one edge connecting the same two vertices
(multiple edges). Graphs which permit multiple edges are
called multigraphs.

A drawing Γ of a graph G maps each vertex v to a
distinct point Γ(v) of the plane and each edge (u, v) to a
simple open Jordan curve Γ(u, v) with endpoints Γ(u) and
Γ(v) [3]. A drawing is planar if no two distinct edges
intersect except, possibly, at common endpoints. Some
algorithms for constructing drawings of graphs are only
designed for special classes of graphs, like trees, (simple,
undirected, connected acyclic graphs), planar graphs
(graphs which can be drawn in a plane without edges
crossing), or directed acyclic graphs, while the other ones
even work for general graphs.

B. An overview of graph drawing algorithms
An overview of the most popular classes of graph

drawing algorithms will be given in the next couple of
paragraphs. More detailed descriptions of them can be
found in [3].

Tree drawing is one of the best studied areas of graph
drawing. That is not surprising since automatic generation
of drawings of trees finds many practical applications. All
trees are planar, which means that it is always possible to
construct drawings of them with no edge crossings. There
are several time-efficient tree drawing strategies which
allow creation of aesthetically pleasing drawings.

A circular drawing of a graph is its visualization with
the following characteristics:

 the graph is partitioned into clusters
 the nodes of each cluster are placed onto the

circumference of an embedding circle

 each edge is drawn as a straight line
These algorithms have many application, especially in
tools that manipulate networks.

A rectangular drawing of a plane graph is a drawing
of it in which each vertex is drawn as a grid point on an
integer grid and each edge is drawn as a sequence of
alternate horizontal and vertical line segments along the
grid. These algorithms find applications in circuit layouts,
database and entity-relationship diagrams and
floorplanning.

Force-directed algorithms are among the most
important classes of graph drawing algorithms. They are
very flexible and can be used to calculate layouts of all
simple undirected graphs. They calculate the layout of the
graph using only information contained within the
structure of the graph itself. Graphs drawn with these
algorithms tend to be aesthetically pleasing, exhibit
symmetries, and tend to produce crossing-free layouts for
planar graphs. There are many force-driven algorithms,
with Tutte’s 1963 barycentric method being considered to
be the first one. The most popular ones include Kamada
and Kawai [4] and Fruchterman-Reingold [5].

Hierarchical drawing algorithms can be used when
dealing with directed graphs (or digraphs) which
represent hierarchies. Examples of hierarchies or near-
hierarchies are, among others, class diagrams and function
call graphs from software engineering. The main idea
behind hierarchical methods is to modify force-directed
methods to take into account edge directions, and use
them to draw digraphs.

C. Class diagrams as graphs
Class diagrams can easily be viewed as graphs with the

elements representing vertices and the links representing
edges. They can have multiple links between the same
two elements. On top of that, these diagrams can contain
recursive links (links connecting one element to itself).
Therefore, they can be viewed as multigraphs that can
contain loops. These graphs can be planar, but there is no
guarantee that that will be the case. The same goes for
connectivity. Similarly, some class diagrams contain
cycles, others are acyclic. Generally, class diagrams are
directed, but this cannot be seen as a rule since links can,
and often are navigable, but not always.

Having all of this in mind, as well as the descriptions
of different types of graph drawing algorithms, it can be
concluded that force-directed and hierarchical algorithms
are most suitable for usage in class diagram layouters.
However, simply performing these algorithms might not
be enough to form an aesthetically pleasing drawing of a
class diagram. Additional steps might have to be
performed in order to show loops and multiple edges
correctly.

IV. RELATED WORK

There are quite a few libraries for analyzing and
drawing graphs for Java. In this section, some of the most
popular ones will be briefly described, with the focus
being on quantity and quality of the implemented graph
layout algorithms. Furthermore, a few examples of how
these algorithms can be used by some other projects will
be given, accompanied by a short discussion regarding the
complexity of such calls.

A. A preview of the most widely used free graph
libraries for Java

The most widely known and used free graph libraries
include JGraphT [6] and JGraph [7], JGraphX [7], Prefuse
[8] and JUNG (Java Universal Network/Graph
Framework) [9]. It can also be noted that there are some
commercial solutions, such as yFiles from yWorks [10],
but, since using them in most projects is not a likely
possibility, they will not be considered in this paper.
Furthermore, neither will tools that only generate images,
such as GraphViz [11], since their layout algorithms
cannot be integrated with already existing graphical
editors.

All of these libraries focus on enabling users to model
and analyze and/or visualize data that can be represented
as a graph or a network. Apart from JGraphT, all projects
put heavy emphasis on visualization, some even allowing
users to interact with the created graphs. In the following
passages a short preview of some of the most popular Java
graph libraries will be given, followed by a discussion
regarding how convenient or inconvenient it would be to
integrate their layout algorithms with already existing
tools for visualizing the given data.

JGraphT is a free Java graph library that provides
mathematical graph-theory objects and algorithms [6]. It
enables simple graph creation and offers implementations
of a wide range of graph analysis algorithms, such as
Dijkstra's shortest path, but does not provide any layout
algorithms. In fact, it relies on JGraph for visualization.
A notable problem which users of this particular
combination of libraries face is that JGraphT only
supports usage of an older version of JGraph. JGraph was
significantly enhanced and rewritten from scratch in
version 6, with even the name being changed to JGraphX
[7]. However, JGraphT wasn't updated, still using the old
version of the previously mentioned visualization library.

JGraphX is a Java Swing graph visualization library.
It enables integration of interactive diagrams into larger
Swing applications [7]. It is possible to customize certain
properties of the graphs such as design of the vertices,
labels of the edges, etc. Most importantly, it also provides
a few layout algorithms meant to assist users in setting
out their graph. Most notably, JGraphX implements one
rather effective force-directed algorithm, a simulated
annealing layout based on [12]. Moreover, it also
provides implementations of a few different tree layouts.

Prefuse is another library set of tools for creating
interactive data visualizations [8]. Its distinguishing
feature is the ability to read data and create graphs
directly from XML files and relational databases with
only a line or two of code. When it comes to layout
algorithms, Prefuse, like JGraphX offers a number of tree
layouts, but also two force-directed ones, including the
mentioned Fruchterman-Reingold.

Java Universal Network/Graph Framework, also
known as JUNG, is a library that offers both the
possibility of analyzing and visualizing graphs [9]. The
current distribution of JUNG includes implementations of
a number of algorithms from graph theory, data mining
and social network analysis, but also provides a
visualization framework. JUNG framework, while not
containing the largest number of implementations of
different layout algorithms out of the other mentioned
alternatives, does implement more force-directed ones. In
fact, JUNG provides an implementation of the previously

mentioned Fruchterman-Reingold algorithm and a
slightly modified version of it, as well as Kamada-Kawai.
However, it is quite complex to set custom sizes of the
JUNG graph vertices.

B. Integration with existing graphical editors
The problem which will be analyzed in this section is

how to use layout algorithms provided by the mentioned
libraries within an already existing graphical editor. To be
more precise, within an existing class diagram editor,
where sizes of the vertices play a significant role. With all
of the graph drawing libraries putting strong emphasis on
visualization, simply calling a layout algorithm and
retrieving the results i.e. positions of the vertices and, if
available, information about locations and shapes of the
edges, can be quite complex.

Typically, in order to call a layout algorithm, it is
necessary to provide an instance of the graph class,
meaning that the application's data model has to be
transformed into the suitable format. In addition to that,
visualization components may have to be initialized, even
though they won't be used. More importantly,
implementations of layout algorithms and/or graph,
vertex and edge classes have to be analyzed in search of a
way of retrieving information about the vertices and
edges following the execution of layout algorithms. Out
of the mentioned libraries, JGraphX and JUNG provide
the largest number and the most complex layout
algorithms. For this reason, examples will cover
integration with their algorithms.

It is worth mentioning that integration with Prefuse is
even more complex. Prefuse enables simple creation of
graphs directly from XML files and relational databases.
While it is easy to see why these features could be put to
good use in many projects, it is dynamical creation of
graphs which is of importance in this particular case.
That, however, is accomplished much harder. JGraphT -
JGraph combination also won't be used in the examples,
since it is now obsolete, like it was explained in the
previous section.

Every diagram of Kroki's UML class editor contains a
list of elements and links between them. Let's assume that
prior to calling the layout algorithms, elements were
already loaded into a list called diagramElements, while
the links were all inserted into a list simply called links.
An example of calling a JGraphX layout algorithm and
retrieving positions of the vertices is shown in code
listing 4.1.

Firstly, it can be noticed that creating graphs using
already existing elements is a bit inconvenient as JGraphX
graphs aren't parametrized and thus cannot contain
vertices of any given class. Secondly, one must be quite
familiar with how JGraphX works in order to get positions
of the vertices once layout algorithms have finished
calculating them.

Accomplishing the same using the JUNG framework is
much simpler, which can be seen by analyzing code
listing 4.2. However, it is necessary to initialize the
visualization component in order to trigger execution of
layout algorithms. Also, retrieving positions from layout
algorithm after it was performed, while easy to do, is not
well documented and can prove to be quite hard to
discover.

Code listing 4.1 Calling a JGraphX layout algorithm and retrieving the
results

Code listing 4.2 Calling a JUNG layout algorithm and retrieving the
results

Another limitation of the JUNG framework, which was
already briefly mentioned, is the complexity of setting
custom sizes of the vertices. A solution to this problem
proposed in [13] includes the use of aspects and requires
considerable knowledge of the framework. On the other
hand, simply using the default sizes of the graph vertices
when performing layout algorithms can ultimately lead to
their overlapping. Elements of class diagram, of course,
fall into this category, which limits direct applicability of
the JUNG framework.

Furthermore, it must be stressed that, as discussed in
the third section, class diagrams are multigraphs that can
contain loops. If that is indeed the case, in addition to
calling the algorithms of the chosen library, users would
have to handle loops and set positions of the overlapping
edges (which happens when the graph has several edges
between the same two vertices) themselves. In addition to
the already mentioned problems, many algorithms do not
perform particularly well if disconnected graphs are
passed to them. There is often too much free space
between the disjoint parts of such graphs.

V. GRAPH ANALYSIS AND DRAWING LIBRARY (GRAD)

The main motivation behind the project was to
implement a variety of graph analysis and drawing
algorithms and enable very simple integration with
already existing graphical editors, which includes the
possibility of calling the layout algorithms and retrieving
the results very easily, while also being able to specify
certain properties of the vertices, such as their sizes. It is
worth mentioning that the current version of Grad also
offers implementations of several graph analysis
algorithms, such as planarity testing and graph traversal.
However, they are not the main focus of this paper and
will not be described in more detail. All examples of
diagrams that will be shown in this section were created
using Kroki's lightweight UML editor.

A. Layouting implementation
At the moment, there are five different layout

algorithms available: three force-directed ones, one
circular and the so-called box layout, which places
elements in a table-like structure. Special attention was
given to graphs with loops and multiple edges, enabling
any custom class diagram to be arranged in an
aesthetically satisfying way, with no edges overlapping.
The problem that was mentioned in the previous section,
regarding disconnected graphs was also addressed. Parts
of these graphs are arranged separately and positioned in
such way that they are neither too far apart from each
other, nor too close. In the following passages, examples
of class diagrams arranged using different layout
algorithms will be shown.

The three currently provided force-directed
algorithms are Kamada-Kawai, Fruchterman-Reingold
and the basic spring algorithm. After performing these
algorithms, additional steps are taken to make sure that no
vertices are overlapping. If distances between any two
vertices are smaller than the specified limit, their positions
are adjusted. Users can set the limit themselves before
calling layout algorithms. If they do not choose to do so, a
predefined value is used. An example of an arranged class
diagram with recursive links and two links between
classes “Panel6” and “Panel2” using Kamada-Kawai
algorithm is shown in Figure 5.1.

Figure 5.1 An example of a class diagram arranged using Kamada-
Kawai algorithm

Like it was mentioned in section 3, force-directed
algorithms tend to produce crossing-free layout for planar
graphs. Looking at Figure 5.1, it can be noticed that this
indeed is the case here. Also, the two links between the

same two classes don't overlap, and the recursive link
connecting “Panel1” with itself is not hidden beneath the
class.

Circular layout places vertices onto the circumference
of an embedding circle. If the graph is biconnected (a
graph which remains connected if any vertex is deleted),
additional preprocessing is performed in order to
minimize the number of crossings. The preprocessing
involves calculation of the best possible order of vertices.
An example of a class diagram arranged using the
circular graph drawing algorithm is shown in Figure 5.2.
Implementation of an algorithm for drawing non-
biconnected graphs on multiple embedding circles is
planned for future releases of Grad.

Figure 5.2 An example of a class diagram arranged using the circular
graph drawing algorithm

Box layout places vertices in a table-like structure. The
basic idea is to position a predefined number of vertices in
one row, before continuing to the next one. Sizes of the
vertices are taken into account when calculating heights of
the rows and widths of the columns in order to prevent the
vertices from overlapping. The number of vertices in a
row can be adjusted by the user before executing the
algorithm. If a class diagram is organized in such way that
it contains a large number of packages on the first level,
this layout is by far the best choice. An example of such
usage is shown in Figure 5.3.

Figure 5.3 Using box layout to organize a diagram containing only
packages

B. Integration with existing graphical editors
Grad can easily be used in combination with already

existing graphical editors. In fact, the ease of integration
was one of the project's main requirements.

The central class, which represents a graph, is
parametrized, which means that it is safe to use just about
any two classes as types of vertices and edges. The only
requirement that must be fulfilled is that these classes
have to implement appropriate interfaces (called Vertex
and Edge), making it possible to easily specify properties
of the vertices and edges (e.g. sizes of the vertices) which
will later be used by the layout algorithms.

When calling a layout algorithm, one only needs to pass
lists of vertices and edges, and not the already created
graph since it will automatically be created later.
Moreover, an object containing maps of vertices and
edges and their positions is returned. Therefore, all
information needed to position the editor's elements is
obtained with no additional effort. Like it was already
mentioned, Grad puts emphasis on properly handling
loops and multiple edges. For this reason, edges can
contain multiple segments whose endpoints are returned.
A class diagram encapsulating previously explained is
shown in Figure 5.4.

Figure 5.4 A part of Grad's model showing classes and interfaces needed
for integration with other tools

It should be stressed that there is no need to dig deeper
into Grad's implementation, to instantiate a visualization
component or anything along those lines in order to call a
layout algorithm and retrieve the results. To demonstrate
that it is truly easy to do so, an example of calling the
Kamada-Kawai graph drawing algorithm is shown in code
listing 5.1. It is assumed that we have the same lists of
elements and links like in chapter 4 at our disposal.

Code listing 5.1 Calling a Grad layout algorithm and retrieving the
results

It can also be noted that it even isn't necessary to
instantiate a class implementing the desired algorithm, as
seen in code listing 5.1. The users only need to select an
enumeration value which corresponds to their algorithm

1..1

0..*
edges

1..1

0..*
vertices

0..1

1..1
graph

Layouter

+
+ <<Constructor>>

layout ()
Layouter (V vertices, E edges,
 Algori thms algorithm)

: Drawing<V,E>

<V,E>

Graph

<V,E>

Edge

+
+

getOrigin ()
getDestination ()

: V
: V

<V>

Vertex

+ getSize ()

Drawing

-
-

vertexMappings
edgeMappings

: Map<V, Point2D>
: HashMap<E, List<Point2D>>

<V,E>

<<Enum>>

Algori thms

-
-
-
-
-

KAMADA_KAWAI
FRUCHTERMAN_REINGOLD
SPRING
CIRCLE
BOX

: EnumConstant
: EnumConstant
: EnumConstant
: EnumConstant
: EnumConstant

of choice, while everything else will later be handled by
the central class responsible for executing the layout
algorithms, called Layouter.

VI. CONCLUSION

This paper presented an overview of different graph
drawing algorithms and explored the possibility of
integrating layout algorithms of some of the most popular
Java graph drawing and analysis libraries with a
separately developed graphical editor. In other words, in
cases when their visualization isn't needed. Certain
problems regarding ease of such integration, as well as
some issues characteristic to arranging class diagrams
were pointed out. They include the need to get quite
familiar with the libraries before being able to call the
layout algorithms they provide and retrieve the calculated
positions of the vertices, as well as problems which might
occur when the graph contains loops and multiple edges.
These issues were addressed in a new graph drawing and
analysis library called Grad.

Grad offers implementations of a variety of graph
analysis and drawing algorithms, while focusing on the
ease of integration with already existing graphical editors.
Plans for future improvements of Grad include
implementations of:

 an algorithm for drawing non-biconnected graphs
on multiple embedding circles

 several tree drawing and hierarchical algorithms
 labeling algorithms which address automatic

placement of text symbol labels

REFERENCES

[1] G. Milosavljevic, M. Filipovic, V. Marsenic, D. Pejakovic, I.
Dejanovic, “Kroki: A mockup-based tool for participatory
development of business applications“, IEEE 12th Conference on
Intelligent Software Methodologies, Tools and Techniques, pp.
235-242, 2013

[2] Graph Analysis and Drawing library (Grad),
https://github.com/renatav/GraphDrawing, online, accessed
January 11, 2015.

[3] Roberto Tamassia, Handbook of Graph Drawing and
Visualization, Chapman & Hall/CRC, 2007.

[4] T. Kamada andS. Kawai, “An algorithm for drawing general
undirected graphs”, in Information Processing Letters, vol. 31, pp.
7-15, April 1989.

[5] T. Fruchterman and E. Reingold, “Graph drawing by force-
directed placement” in Software Practice and Experience, vol. 21,
pp. 1129 – 1164, November 1991.

[6] JGraphT, http://jgrapht.org , online, accessed January 11, 2015.
[7] JGraphX, https://github.com/jgraph/jgraphx , online, accessed

January 11, 2015.
[8] Prefuse, http://prefuse.org , online, accessed January 11, 2015.
[9] JUNG Framework, http://jung.sourceforge.net , online, accessed

January 11, 2015.
[10] yFiles, www.yworks.com/en/products/yfiles/, online, accessed

January 11, 2015.
[11] GraphViz, http://www.graphviz.org, online, accessed January 11,

2015.
[12] Ron Davidson, David Harel, “Drawing Graphs Nicely Using

Simulated Annealing”, in ACM Transaction on Graphics, vol. 15,
pp. 301-331, October 1996.

[13] Setting custom sizes of the JUNG graph vertices,
http://sourceforge.net/p/jung/discussion/252062/thread/0b98adc5 ,
online, accessed January 22, 2015.

[14] Kroki source, https://github.com/KROKIteam/KROKI-mockup-
tool, online, accessed January 22, 2015.

http://sourceforge.net/p/jung/discussion/252062/thread/0b98adc5
https://github.com/KROKIteam/KROKI-mockup-tool
https://github.com/KROKIteam/KROKI-mockup-tool
http://www.graphviz.org/
http://www.yworks.com/en/products/yfiles/
http://jung.sourceforge.net/
http://prefuse.org/
https://github.com/jgraph/jgraphx
http://jgrapht.org/
https://github.com/renatav/GraphDrawing

	I. Introduction and Motivation
	II. Kroki's Lightweight UML Editor
	III. Basic Graph Theory Concepts and Graph Drawing Algorithms
	A. Basic definitions
	B. An overview of graph drawing algorithms
	C. Class diagrams as graphs

	IV. Related Work
	A. A preview of the most widely used free graph libraries for Java
	B. Integration with existing graphical editors

	V. Graph Analysis and Drawing Library (Grad)
	A. Layouting implementation
	B. Integration with existing graphical editors

	VI. Conclusion

